

Symposium Singapore May 9-11 2024

World

Assessing precision in guided implant surgery: a prospective clinical study

¹Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Portugal

Fonseca P¹
Fonseca C¹
Quezada M¹
Marques T¹
Correia A¹

OBJECTIVES

To ensure optimal function, aesthetics, oral hygiene, and long-term clinical success, it is imperative to employ a prosthetically-driven surgical approach. This can be achieved by combining CBCT with intraoral scans in an implant-planning software that designs a surgical guide, thereafter 3D printed to be used in the surgery.

AIM: assess the linear and angular deviations of dental implants placed in patients treated at a university dental clinic through guided surgery techniques.

POPULATION: patients that placed implants

METHODS

PROJECT: "Application of digital technologies in oral rehabilitation" (CIIS – FMD/UCP; Ethics Committee for Health, n.201, March 24th, 2022).

hics with guided surgery – Postgraduation Courses th, in Digital Prosthodontics and Periodontology.

VARIABLES: type of surgical guide (tooth and/or muco-tooth-supported guides); type of guided-surgery performed (fully-guided and pilot-guided); bone location of the implants placed: maxilla or mandible.

DATA COLLECTION

e-OHR software (Newsoft DS®)
CoDiagnostix® implant planning software

- 1 Planning stage (pre-operatory)
- 2 Dental impressions (post-operatory)
- 3 Treatment evaluation tool

TREATMENT EVALUATION Angular deviation 3D at apex/ crest MD at apex/crest BL at apex/crest Apico-coronal at apex/crest

RESULTS

SAMPLE

23 patients / 55 yo (mean age) 13 male / 10 females

Fully-guided more precise than pilot-guided. (Table 1)

45 IMPLANTS

39 implants: tooth-supported guides 6 implants: muco-tooth-supported guides

Implants of <u>greater length</u> are more likely to present <u>3D</u>
<u>deviations at apex</u> level.

No correlations for implant diameter. (Table 2)

45 IMPLANTS

36 implants: fully-guided / 9 implants: pilot-guided 35 implants: maxilla / 10 implants: mandible

The <u>angular deviation, 3D at crest and MD at apex</u> were significantly different in the <u>mandible</u>.

(Table 3)

Table 1. Linear and angular deviations.

PARAMETERS	Mean (x̄) FULLY-GUIDED	Mean (x̄) PILOT-GUIDED	
Ang. Deviation (°)	4,1	4,5	
3D at apex (mm)	1,8	1,9	
3D at crest (mm)	1,1	1,5	

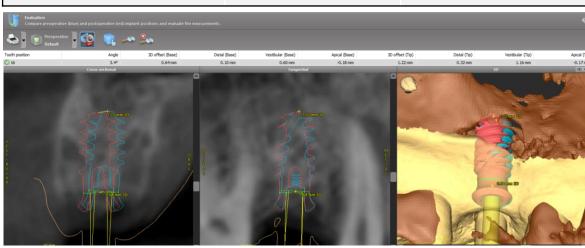


Figure 1. Treatment Evaluation tool.

Table 2. Correlation between linear / angular deviations and implant diameter / length.

	Implant diameter		Implant length	
Variables	(3.5 / 3.75 / 4.0 / 4.5 / 5)		(8 / 10 / 12 / 14)	
	ρ	p-value	ρ	p-value
Ang. Deviation	0.113	0.441	-0.064	0.663
3D at crest	0.104	0.475	-0.187	0.199
MD at crest	-0.090	0.540	0.278	0.053
BL at crest	0.155	0.289	0.005	0.975
AC at crest	-0.012	0.935	-0.005	0.975
3D at apex	0.101	0.489	-0.284	0.048
MD at apex	-0.146	0.316	0.279	0.053
BL at apex	0.132	0.366	-0.301	0.036
AC at apex	0.054	0.713	0.047	0.750

BL: Bucolingual; MD: Mesiodistal; AC: Apico-coronal; p: Spearman correlation coeficiente

Table 3. Distribution of linear and angular deviations according to the location.

VARIABLES (mm)	LOCATIONS				
	Maxilla	Mandible	Comparison statistics	p-value	
Ang. Deviation, median (IQR)	3.70 (2.90)	6.00 (2.40)	U=145.0	0.011	
3D at crest, median (IQR)	1.02 (0.55)	1.28 (0.72)	U=169.0	0.043	
MD at crest, median (IQR)	-0.13 (0.77)	-0.32 (0.37)	U=185.0	0.092	
BL at crest, mean (SD)	0.50 (0.53)	0.30 (0.61)	t=1.174	0.246	
AC at crest, mean (SD)	-0.10 (0.82)	0.07 (1.15)	t=-0.608	0.546	
3D at apex, mean (SD)	1.54 (0.72)	2.16 (0.66)	t=-2.901	0.006	
MD at apex, mean (SD)	-0.13 (0.95)	-0.80 (1.12)	t=2.183	0.034	
BL at apex, median (IQR)	0.46 (1.09)	0.54 (1.54)	U=221.5	0.365	
AC at apex, mean (SD)	0.04 (0.79)	0.16 (1.17)	t=-0.431	0.669	

BL: Bucolingual; MD: Mesiodistal; AC: Apico-coronal; SD: Standard-deviation; IQR: Interquartile range; t: T-test; U: Mann-Whitney test

CONCLUSIONS

This research shows that:

- Fully-guided implant's surgery is more precise.
- Implants of greater length are more prone to deviations at the apex.
- Greater deviations occur in the mandible.

SPEMD Grant to Support Scientific Dissemination

